A note on the edge cover number and independence number in hypergraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the edge cover number and independence number in hypergraphs

Consider a hypergraph of rank r > 2 with m edges, independence number and edge cover number . We prove the inequality (r − 2)m+ r − 1 . One application of this inequality is a special case of a conjecture of Aharoni and the first author extending Ryser’s Conjecture to matroids. © 2007 Elsevier B.V. All rights reserved.

متن کامل

A Note on Intersecting Hypergraphs with Large Cover Number

We give a construction of r-partite r-uniform intersecting hypergraphs with cover number at least r − 4 for all but finitely many r. This answers a question of Abu-Khazneh, Barát, Pokrovskiy and Szabó, and shows that a long-standing unsolved conjecture due to Ryser is close to being best possible for every value of r.

متن کامل

A note on the Caro-Tuza bound on the independence number of uniform hypergraphs

We show some consequences of Caro and Tuza’s [J. Graph Theory 15 (1991), 99–107] lower bound on the independence number of aK-uniform hypergraph H. This bound has the form CK · ∑n i=1(di+1) −1/(K−1), where CK is a constant depending only on K, and d1, . . . , dn are the degrees of the vertices in H. We improve on the best known bounds for CK : in particular, we prove that C3 ≥ √π/2 and that CK ...

متن کامل

Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

متن کامل

A lower bound on the independence number of arbitrary hypergraphs

We present a lower bound on the independence number of arbitrary hypergraphs in terms of the degree vectors. The degree vector of a vertex v is given by d(v) = (d 1 (v); d 2 (v); : : :) where d m (v) is the number of edges of size m containing v. We deene a function f with the property that any hypergraph H = (V; E) satisses (H) P v2V f(d(v)). This lower bound is sharp when H is a matching, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2008

ISSN: 0012-365X

DOI: 10.1016/j.disc.2007.05.006